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Abstract—We explore the use of natural language to guide
hierarchical reinforcement learning (HRL) agents in long-horizon
indoor rearrangement tasks. Using the Habitat Lab framework
and the ReplicaCAD rearrange easy benchmark, we train a
high-level policy to select among pre-trained low-level skills
based on both visual observations and language instructions.
To fuse multimodal inputs, we evaluate two techniques: feature-
wise linear modulation (FiLM) and cross-attention. Language
instructions are generated using a large language model and
embedded via a pretrained CLIP encoder. Our results show
that incorporating language slightly decreases task performance;
however, the overall success rate remains low due to compounding
errors from unreliable low-level skills. This suggests that while
language offers valuable context, its benefits are limited without
reliable underlying skills. We discuss key challenges and propose
directions for mitigating cascading failures.

I. INTRODUCTION

Society has long considered the development and integration
of automated agents within the home environment to assist
with everyday tasks. Recent advances in robotics, computer
vision, and natural language processing, have made it possible
for a portion of this vision to come to fruition, yet we are still
far from developing robust embodied agents that interact with
humans in a realistic and natural manner.

A crucial component for such an agent is its ability to
perform everyday indoor tasks, which is a significant challenge
for embodied AI. While reinforcement learning (RL) has
shown promise in enabling agents to learn behaviors through
interaction, scaling to long-horizon tasks remains difficult due
to sparse rewards and large action spaces [1]. Hierarchical
reinforcement learning (HRL) offers a natural solution by
dividing long-horizon tasks into composable low-level skills,
which are orchestrated by a high-level policy [2]. Additionally,
recent advances in multimodal learning suggest that language
can serve as an effective interface for specifying high-level
goals [1], [3]–[5]. Moreover, feature-wise linear modulation
(FiLM) [6] and cross-attention mechanisms [7], [8] present ef-
fective strategies for fusing vision and natural language obser-
vations. So, in this work, we build upon the Habitat Lab [9]–
[11] framework to incorporate natural language instructions
into the high-level controller, enabling it to choose low-level
skills conditioned on both language and visual observations.

We use the ReplicaCAD [10] rearrange easy benchmark
and augment it with natural language instructions generated

from template-based scene descriptions. Our experiments com-
pare the performance of language-conditioned HRL agents
against visual-only baselines.

II. PROBLEM STATEMENT

We focus on addressing the indoor environment rearrange-
ment task. Our goal is to develop a hierarchical reinforcement
learning agent that can:

• Utilize natural language to guide low-level skill selection
• Effectively fuse language and visual input to improve task

performance and generalization
• Train and evaluate on realistic 3D rearrangement tasks

with diverse goals and object placements

III. METHODS

A. Dataset

We leverage the ReplicaCAD dataset, a derivative of the
Replica dataset [12], which provides an artist’s recreation
of the FRL apartment intended for use with the Habitat
simulator. More specifically, we use the rearrange easy subset
for training and evaluation. The train split contains 50000
episodes of rearrangement problems across 63 scenes. The
validation split contains 1000 episodes from a separate set
of 21 diverse scenes.

We augment the dataset with natural language instructions
by first extracting the target object and goal locations from the
episode data. Because the locations are provided as number-
ings, we build a mapping from provided indices to receptacle
locations in the scene, and then construct a template sentence
for each episode. This is then passed into a LLM to reword
into natural language. Finally, each generated sentence is
transformed into visual-aware features through a CLIP model.
Our pipeline utilizes Google’s Gemini 2.0 Flash [13] and
OpenAI’s ViT-B/32 CLIP model [14] as our LLM and CLIP
model, respectively.

B. Low-Level Skills Training

Habitat Lab provides a framework for training low-level
skills that can be composed by a high-level policy in a hierar-
chical reinforcement learning (HRL) setup [10]. These skills
correspond to discrete, reusable behaviors such as picking or
placing objects, and are trained independently using Proximal



Policy Optimization (PPO) [15]. Once trained, these low-level
controllers can be used by a high-level policy conditioned on
task-level goals. Of the 9 low-level skills that Habitat Lab
provides, we use the following three as we deem them the
most essential for the rearrangement task:

1) pick
2) place
3) navigate

Each skill policy takes in a set of input state and
visual observations and learns to output low-level ac-
tions for robot control. For the pick skill, we provide
head_depth sensor reading Z ∈ R256×256×1, robot grasp-
ing state is_holding g ∈ 0, 1, revolute joint states
J ∈ R7, object’s starting position po ∈ R3, and desired
relative_resting_position pr ∈ R3. pick’s action
space includes the arms’ joint-level motor control aJ ∈ R7,
a suction gripper’s control ag ∈ R1, and robot base controls
ab ∈ R2. Hence, Apick = aJ ∪ ag ∪ ab ∈ R10. Note that the
base is restricted in planar movement controls. The place
skill receives the same observations and its action space is
identical to pick. For the navigate skill, we provide
goal_to_agent position pga ∈ R2, head_depth sensor
reading Z, and revolute joint states J . navigate uses the
robot base’s action space Anav ∈ R3.

C. Hierarchical RL Training

We train a HRL agent based on Habitat Lab’s benchmark
consisting of a high-level policy that selects among a set of
pre-trained low-level skills. The high-level policy receives both
visual observations and language instructions, and outputs a
sequence of skill calls with corresponding arguments. Addi-
tionally, the target object and its starting position, and the goal
position are given to the model. Along with a baseline with no
language input, we experimented with 2 different approaches
to fusing language and visual input:

1) Visual feature conditioning through feature-wise linear
modulation (FiLM)

2) Visual and language feature fusion through cross-
attention

We will explain our methodology for each of these in the
following sections:

Baseline: We run the benchmark provided by Habitat Lab.
Visual observations are transformed into features through the
provided ResNet-18 encoder [16], and then fed into a recurrent
policy network trained with PPO. The agent is not conditioned
on language input and must solve the task using only visual
and sensor observations.

FiLM: We modify the ResNet visual encoder to include
FiLM layers in each residual block, similar to the architecture
described in [6]. These FiLM layers allow the network to
condition visual feature extraction on the language input by
applying learned, instruction-dependent affine transformations.
This enables the agent to extract task-relevant visual cues
based on the provided language command.
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Fig. 1. Fused vision language feature pipeline using FiLM (left) and Cross-
Attention (right).

γ, β ← FiLM(El)

Fv ← γFv + β
(1)

FiLM layer implementation was done using PyTorch [17]
linear layers. FiLM takes in precomputed CLIP embeddings El

during the forward pass and outputs scale and shift parameters,
γ and β. Then, the visual features Fv are linearly transformed
with (1) before being passed to the following ReLU layer.

Cross-Attention: We add a cross-attention block to fuse
visual features from the ResNet encoder with language em-
beddings. Following a common multi-modal fusion strategy,
the language features are used as the query Ql, while the visual
features serve as the key Kv and value Kv . This allows the
agent to attend selectively to spatial regions in the visual input
that are most relevant to the language input.

F = softmax
(
QlK

T
v√

dk

)
Vv (2)

D. Reward Function Design

Furthermore, to facilitate better learning, we add a
dense reward signal. Originally, Habitat Lab uses a
pddl_subgoal_reward as its reward signal, which is
a sparse reward based on completion of certain subgoals
(i.e. navigating to an object, picking up the object, etc.).
However, during training, we observe that the agent struggles
to learn effectively from sparse rewards. To address this,
we augment the reward with additional terms that are more
dense than the original, building a CompositeReward.
This is the sum multiple rewards, including the origi-
nal pddl_subgoal_reward and a move_obj_reward.
Thus, our reward function becomes:

rt = λpr
(p)
t + λmr

(m)
t (3)

where rt is the total reward at timestep t, r
(p)
t is

the pddl_subgoal_reward at timestep t, r
(m)
t is the

move_obj_reward at timestep t, and λp, λm are tunable
coefficients (we used λp = λm = 1).

The move_obj_reward includes three primary compo-
nents. (1) a distance reward is given to steer the agent towards



Fig. 2. Success rate and reward training curves for pick, place, and nav (respectively from left to right) skills.

the object and then the goal, (2) a one-time pick reward is
given when the target object is successfully grasped, and (3)
a reward given for accurately placing the target object.

IV. RESULTS

A. Low-level Skills

Training the low-level skill policies proved to be quite diffi-
cult. These policies were extremely data hungry and required
multiple days to train on a single NVIDIA RTX A5000. In
the end, we achieved ≈ 60% on pick, ≈ 45% on place,
and ≈ 80% on navigate. Success rate and reward training
curves are shown in Figure 2.

We observe that, as expected, the action_loss and
value_loss were unrepresentative of training progress and
we relied on monitoring the reward for training insights. The
agent seems to excel rapidly when learning the navigate
skill, whereas for pick and place, the agent struggles
significantly more, oftentimes plateauing in success rate. We
attribute this to the inherent difference in difficulty of these
tasks. navigate is regarded as a high-level locomotion
task, which requires less degrees of freedom to solve. pick
and place on the other hand suffer from the higher order
complexities of grasping or releasing an object in a way that
does not cause undesired object-scene interference.

B. High-level Neural Policy

Because of compounding errors from poor low-level poli-
cies, training the high-level policy presented further difficul-
ties. We managed to achieve ≈ 5.0% success rate on the
rearrangement task with our approach. Comparatively, the
baseline achieves ≈ 5.9. Figure 3 shows training success
rates for the baseline (left) and the cross-attention methods

Fig. 3. Success rate curves for baseline (left) and our method (right) for the
rearrangement task.

(right). We found no notable difference between the baseline
and FiLM methods.

During training, we noticed that reward curves indicate
some learning progress at first as the agent seems to hone
in on the navigate skill. However, progress halts at 5%
success rate and plummets. In this stage, we observe the rollout
durations and object collisions to reduce drastically, hence
we conclude the agent is learning to prefer inaction to avoid
negative rewards.

V. DISCUSSION

We find that adding language input slightly decreases task
performance. However, given the hierarchical nature of the
policy where errors can compound through skill chaining,
the observed results are difficult to interpret. Combined with
the overall low success rate, this makes it unclear whether
the performance differences reflect issues with combining
language and vision or arise from incidental correlations and
artifacts in the training data.



Other works have also tackled this problem. The Habitat
Rearrangement Challenge in 2022 [18] provides a baseline
with 30% success rate. However, it is important to note that
this implementation uses a fixed high level policy which
is not learned, therefore reducing complexity and potential
errors significantly. [19] achieves a success rate of 64% by
implementing mobile manipulation skills, therefore reducing
compounding errors seen with the original stationary skills.

These findings suggest that to achieve robust language-
conditioned rearrangement performance, it is crucial to not
only improve language grounding but also to address the
structural instability caused by skill chaining. Mitigating com-
pounding errors, whether by improving skill reliability, re-
fining high-level decision-making, or incorporating corrective
feedback mechanisms, may be a necessary prerequisite for
realizing the full potential of multimodal hierarchical policies.

A. Challenges

We faced many challenges during our experimentation. First
off, we faced issues with bugs in the Habitat Lab repository,
which hindered our progress in training skills, and we suspect
are from version incompatibilities. The majority of these bugs
were related to tensor shape issues, specifically with the
recurrent neural network state encoders used in the policy (as
Habitat Lab uses these encoders for both high and low level
actions).

Additionally, as mentioned before, training took longer
than expected, with some skills taking multiple days to train.
Environment issues also stopped us from running on multiple
devices.

VI. CONCLUSION

In this work, we explored the integration of natural language
input into hierarchical reinforcement learning agents for the
task of indoor environment rearrangement. By fusing language
and vision through FiLM and cross-attention mechanisms,
we aimed to improve high-level policy decisions in complex,
multi-step tasks. While our experiments show modest per-
formance decreases from incorporating language, the overall
success rate remains low, highlighting the persistent challenge
of compounding errors in hierarchical control.

Our results emphasize the importance of robust low-level
skill execution. Furthermore, they suggest that language-
conditioned policies alone are insufficient without architectural
and algorithmic strategies that can reduce compounding errors.

Future work should explore tighter integration between
high and low-level components and more effective training
strategies. Additionally, richer and more realistic language an-
notations could help evaluate whether agents truly understand
language, or merely exploit dataset-specific patterns.

A. Member Contributions

The contributions are as follows:
1) Joe: Training RL, implementing features, report
2) Allen: Dataset augmentation, help with features, report
3) Nishant: Website, help with debugging, report
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